Neonatal olfactory sensory deprivation decreases BDNF in the olfactory bulb of the rat.

نویسندگان

  • J H McLean
  • A Darby-King
  • W S Bonnell
چکیده

We hypothesized that brain-derived neurotrophic factor (BDNF) may be down-regulated in the olfactory bulb ipsilateral to experimental naris occlusion. Unilateral naris occlusion was performed on rats at postnatal day three (P3). On P10, P30, and P60 olfactory bulbs were weighed and assayed for tyrosine hydroxylase (TH), BDNF, and TrkB by Western blotting to determine the response of BDNF and its cognate receptor, TrkB, both during the acute phase of sensory loss (P10) and longer term. TH levels, which are highly dependent on intact input from the olfactory epithelium, were assayed as a means of determining the success of occlusion in each animal. At P10, BDNF protein expression was variable but most often increased ipsilateral to deprivation. In contrast, by P30 and P60 TH levels were found to be significantly decreased in the ipsilateral bulbs as were the levels of BDNF. TrkB protein levels changed little relative to the control side. Immunohistochemical localization of BDNF within the control-side olfactory bulb revealed small cells located mainly in the mitral cell layer and internal plexiform layer. Very few of the BDNF immunoreactive cells were visible in the bulb ipsilateral to the occlusion by P30. Given the roles of BDNF in survival of cells and plasticity during development, the decrease in BDNF expression subsequent to olfactory sensory deprivation may contribute to cellular and synaptic deficits observed by others following olfactory sensory deprivation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Olfactory sensory deprivation increases the number of proBDNF-immunoreactive mitral cells in the olfactory bulb of mice.

In the olfactory bulb, apoptotic cell-death induced by sensory deprivation is restricted to interneurons in the glomerular and granule cell layers, and to a lesser extent in the external plexiform layer, whereas mitral cells do not typically undergo apoptosis. With the goal to understand whether brain-derived neurotrophic factor (BDNF) mediates mitral cell survival, we performed unilateral nari...

متن کامل

The Effects of Soy Milk on Histomorphometric Changes of Olfactory Bulb in Neonatal Ovariectomized RatsSprague- Dawley strain

Background & Objective: Soy milk contains isoflavones that comprises the phytoestrogens families. They have structural similarities with mammalian estrogen. This study was done to investigate the effects of soy milk on histomorphometric changes of olfactory bulb in neonatal ovariectomized rats.   Materials & Methods: Thirty female rats Sprague- Dawley strain (one-day old) were kept in a standa...

متن کامل

A Subtype-Specific Critical Period for Neurogenesis in the Postnatal Development of Mouse Olfactory Glomeruli

Sensory input is essential for the normal development of sensory centers in the brain, such as the somatosensory, visual, auditory, and olfactory systems. Visual deprivation during a specific developmental stage, called the critical period, results in severe and irreversible functional impairments in the primary visual cortex. Olfactory deprivation in the early postnatal period also causes sign...

متن کامل

P11: Assess the Electrophysiological Activity of Olfactory Bulb in the Animal Model of PTSD and its Relationship with Neuroinflammation in the Olfactory Bulb

Post-traumatic stress disorder (PTSD) is a mental health condition that's triggered by a terrifying event - either experiencing it or witnessing it. In addition to the relationship between PTSD and neuroinflammation, research indicates that olfactory bulb are effective in anxiety disorders. The aim of this study was to assess the electrophysiological activity of olfactory bulb in the animal mod...

متن کامل

Mature and Precursor Brain-Derived Neurotrophic Factor Have Individual Roles in the Mouse Olfactory Bulb

BACKGROUND Sensory deprivation induces dramatic morphological and neurochemical changes in the olfactory bulb (OB) that are largely restricted to glomerular and granule layer interneurons. Mitral cells, pyramidal-like neurons, are resistant to sensory-deprivation-induced changes and are associated with the precursor to brain-derived neurotrophic factor (proBDNF); here, we investigate its unknow...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Brain research. Developmental brain research

دوره 128 1  شماره 

صفحات  -

تاریخ انتشار 2001